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A simple theory is developed for the equilibrium height of steps in a thermohaline
staircase. The model is based on a linear stability analysis for a series of salt-finger
interfaces, which reveals a tendency for the staircase to evolve in time until the
characteristic thickness of layers reaches a critical value (H0). Relatively thin layers
successively merge as a result of the parametric variation of the heat/salt flux ratio (γ ),
but these mergers cease when the thickness of layers exceeds H0. The equilibration of
thick steps in our model is caused by the slight inhomogeneity of the convecting layers
which has a stabilizing effect on the staircase. The instability theory is successfully
tested against fully nonlinear numerical simulations and is qualitatively consistent
with oceanic observations.

1. Introduction
When the density of a fluid is determined by two components, which diffuse

at different rates, the flow can become unstable even if the density of the fluid
is increasing downwards. The resulting double-diffusive convection has long been
recognized as a significant, and in many cases dominant, mixing process in the
ocean. Under typical conditions in the subtropical oceans (hot salty fluid above the
cold and fresh), the faster diffuser (T ) is stabilizing and the slower diffuser (S) is
destabilizing, leading to the salt-fingering instability, which is a primary focus of our
study.

One of the most intriguing aspects of double-diffusive convection is related to its
ability to transform smooth vertical gradients into a stepped structure consisting of
mixed layers separated by thin stratified interfaces. Persistent staircases have been
well documented in the Tyrrhenian Sea, below the Mediterranean outflow, and in the
western tropical North Atlantic (Schmitt 1994). Spontaneous layer formation from
the uniform gradients was also observed in laboratory experiments (Krishnamurti
2003).

Several hypotheses have been put forward to explain the origin of thermohaline
staircases. These include the collective instability theory (Stern 1969) and a notion
that the steps represent thermohaline intrusions evolving into a staircase (Merryfield
2000); see the discussion in Radko (2003, referred to as R03 hereafter). However, it
was recently suggested, and confirmed by direct numerical simulations (R03), that
layers form as a result of the instability of the flux gradient laws (Walsh & Ruddick
2000). Linear stability analysis shows that the uniform temperature–salinity gradient
is unstable in the parameter range where the flux ratio of diffusing substances
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γ =αFT /βFS decreases with the density ratio R = αTz/βSz. This instability manifests
itself in the form of growing, horizontally uniform perturbations, which eventually
transform the basic gradient into a well-defined thermohaline staircase. Layers that
initially develop in the numerical simulations (R03) are relatively thin and unsteady.
They merge continuously, and the characteristic height of steps increases in time
correspondingly.

The merger of layers can be explained by stability analysis for a series of interfaces
(Huppert 1971; R03), which indicates that strong interfaces, characterized by large
temperature and salinity jumps, grow further at the expense of weaker interfaces. The
weak interfaces gradually erode and ultimately disappear. The merger events in the
R03 model continue indefinitely, and questions related to staircase equilibration and
selection of the preferred scale of layers have been left unanswered.

A principal feature of the stability analysis in R03 is the assumption that the
convecting layers are homogeneous; small variations in temperature, salinity, and
density in the mixed layers were neglected. However, it is the variation in density that
drives the convective overturning in layers and, we argue, it should be included in a
complete theory of the thermohaline staircase. While the model in R03 explains the
merger of thin layers, it becomes inadequate when layers become sufficiently thick.
In particular, we now demonstrate that the slight inhomogeneity of the convecting
layers has a stabilizing effect on a staircase, eventually suppressing the spontaneous
merger events.

The objective of this study is to develop a theory for the equilibrium height of
steps in a thermohaline staircase. The paper is set out as follows. In § 2 we perform
a linear stability analysis for a series of interfaces, taking the density variation in
the convecting layers into account. The instability theory indicates that layers tend
to merge if their characteristic thickness H is less than a critical value H0, which
is determined by the background gradients of temperature and salinity, and remain
steady if H exceeds H0. It is then suggested (§ 3) that the thickness of the observed
layers corresponds to the marginal instability condition H =H0. The inferences from
the linear analysis are supported by the nonlinear numerical simulations in § 4. Results
are summarized and related to the oceanographic observations in § 5.

2. Instability of a series of interfaces
To gain a preliminary understanding of the interaction between layers in a

thermohaline staircase, we consider the dynamics of a simple, yet illuminating system
in figure 1. The schematic diagram in figure 1(a) shows a basic state consisting of a
series of identical thin salt-finger interfaces separated by convecting layers of equal
thickness H . Following R03, we perturb this steady state as indicated in figure 1(b).
We increase slightly the T , S jump at the interface z = z1, but decrease the jump
at the adjacent interfaces; the vertical structure is assumed to be periodic with the
z-wavelength of 2H . Thus, the state in figure 1(b) can be thought of as an infinite
series of layers in which we simultaneously reduce the magnitude of (�T, �S) at
all steps with even numbers and correspondingly increase the T , S jumps across the
odd steps. Note that such a perturbation does not affect the overall T , S gradient.
Our objective is to determine whether the disturbance will grow in time, implying
instability of the basic state in figure 1(a), or remain small. The essential difference
between this model and the one studied in R03 is that the convecting layers are not
necessarily homogeneous.
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Figure 1. Schematic diagram illustrating the stability analysis for an infinite series of interfaces
(modified from R03). (a) Basic state consisting of identical steps. (b) Perturbed state in which
the T , S jumps at the even interfaces are slightly decreased, and the jumps at odd interfaces
are increased.

2.1. Flux laws

To derive an analytical solution for the system in figure 1, the temperature and salinity
fluxes have to be parameterized as a function of (�T, �S) across the interfaces and
convecting layers. The classical interfacial flux law (Turner 1967) is given by

βFS dim = CS(R)(β�Sdim)b, (1)

where b = 4/3, FS dim is the dimensional flux of salt, �Sdim is the dimensional salinity
difference across the interface, and R is the density ratio. While the early laboratory
experiments tended to support the 4/3 flux law (e.g. Schmitt 1979a) within the margins
of the experimental and statistical error, questions have been raised with regard to
its generality (Kelley et al. 2003). The laboratory values of CS have been found to
overestimate the oceanic fluxes by at least an order of magnitude, a discrepancy
that may indicate that the effective exponent of the flux law realized in the oceanic
conditions exceeds 4/3. Direct numerical simulations by Ozgokmen, Essenkov &
Olson (1998) resulted in an approximate agreement with the 4/3 law over most of
the explored parameter range, but with large deviations at high and low values of
�S, whereas simulations in Paparella (2000) suggest that the exponent of the flux
law consistently exceeds 4/3 and could be as high as b =2. The reader is referred to
Kunze (2003) for a discussion of these and other simple models of interfacial fluxes.

The situation with regard to the convective flux laws is somewhat similar. The
early models – see the discussion in Emanuel (1994) – predicted that in turbulent
Rayleigh–Bénard convection the Nusselt number Nu (defined as the ratio of the
turbulent and molecular fluxes) is proportional to the Rayleigh number to the 1/3
power for stress-free boundaries (2/7 for no-slip). However, more recent studies
raise doubts on the validity of the classical flux laws in the asymptotic limit of
high Rayleigh number. A suite of laboratory and theoretical studies discussed and
classified by Grossmann & Lohse (2000), demonstrates that, at least in the case of
a single-component convection, the exponent of the convective flux law (Nu ∝ Raa)
is less than 1/3. Krishnamurti (1995), for example, reported the exponent a = 0.2
for an experiment in which the Rayleigh number was gradually increased from 106
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and a = 0.25 when Ra was decreased. It is interesting to note that while the classical
theories for the salt-finger interfaces are likely to underestimate the power of the flux
law (1), the early predictions for thermal convection overestimate the corresponding
exponent of the Nu(Ra) relation.

The dynamics of the convection in thermohaline staircases is more complicated and
much less studied than the Rayleigh–Bénard problem. An obvious difference between
the two models results from the presence of two diffusing components. Convective
overturning is driven by the density difference across the mixed layer, and therefore
the dynamics of turbulent convection in this case is controlled by the density Rayleigh
number

Raρ =
g

kT ν

�ρ

ρ
H 3

dim, (2)

rather than by the thermohaline Rayleigh number or Rayleigh numbers based on
individual density components. Another complication is related to the connection
conditions between layers and interfaces, which differ from the rigid boundaries in
the Rayleigh–Bénard convection. Since our purpose is to illustrate the basic principle
of staircase evolution rather than to make quantitative predictions, it is sensible
to assume at the outset that the Rayleigh–Bénard dynamics has relevance to the
convecting layers sandwiched between the salt-finger interfaces. Therefore, we use a
flux law which is analogous to that in the simple one-component convection models:

NuL =
FT dimHdim

kT �TL dim

= CLRaa
ρ. (3)

To be specific, we now consider an example with a = 0.2 in (3) and b = 4/3 in (1).
Extension of the theory for generic power laws with arbitrary exponents a and b is
presented in Appendix A.

2.2. Basic state

It is convenient to non-dimensionalize the governing equations using the salt-finger
scales based on the overall temperature gradient (∂/∂z)T̄dim:

d =

(
kT ν

gα(∂/∂z)T̄dim

)1/4

is the unit of length, d2/kT the time scale, and kT /d the velocity scale. The
expansion/contraction coefficients (α, β) are absorbed in (T , S), and α(∂/∂z)T̄dimd

is used as the scale for both temperature and salinity. As a result, the interfacial flux
law (1) reduces to

FT = C(RI )(�TI )
4/3,

FS =
1

γ (RI )
FT ,


 (4)

where �TI (�SI ) is the T (S) jump across the interface, RI = �TI/�SI the corres-
ponding density ratio, and γ (RI ) the flux ratio. The parameter C(RI ) is related to the

coefficient of the dimensional flux law (1) by C = CSν
1/3γ /(k2/3

T g1/3R
4/3
I ).

For the convecting layers, we use the flux law (3) with a =0.2, which in our non-
dimensional units reduces to

FT = CL

�TL

H
Ra0.2

ρ = CL(�SL − �TL)0.2H −0.4�TL,

FS = CL(�SL − �TL)0.2H −0.4�SL =
FT

RL

,


 (5)

where �TL, �SL, and RL = �TL/�SL < 1 pertain to the T , S variation across the



The thickness of layers in a thermohaline staircase 83

convecting layer. H is the height of the steps; the interfaces in our model are very
thin, and therefore H is dominated by the contribution from the convecting layers.
As is conventional for convectively generated turbulence, we assume that the eddy
diffusivities of T and S in the mixed layers are equal.

Consider the system of identical layers and interfaces shown in figure 1(a). Existence
of a steady state implies that the fluxes through the interfaces and layers are equal.
Equating (4) and (5), we arrive at

C(RI )(�TI )
4/3 = CL(�SL − �TL)0.2H −0.4�TL,

γ (RI ) = RL.

}
(6)

The system (6) is closed by noting that

�TI + �TL = T̄zH = H,

�SI + �SL = S̄zH = H/R̄,

}
(7)

which enables us to compute the temperature and salinity jumps across layers and
interfaces as a function of the prescribed background T , S gradients and H . Of
particular importance for the following theory is to establish a connection between
the interfacial density ratio RI and the background R̄ that is based on the overall
temperature and salinity gradients (T̄ , S̄). While the general solution of (6) and (7) is
deferred to § 3, it is useful at this point to consider briefly the asymptotic limit in which
the (T , S) variation across the convecting layers is much less than the variation across
the interfaces: �TL � �TI , �SL � �SI . After straightforward but lengthy algebra, we
arrive at

�R = RI − R̄ = R̄

(
R̄

γ
− 1

)(
C(R̄)

CL(γ −1 − 1)0.2

)5/6

H 4/9 + O

(
�T 2

L

�T 2
I

)
, (8)

which indicates that the inhomogeneity of the convective layers tends to increase the
interfacial density ratio relative to its background value, and the difference between
the two (�R) increases with H . The implications of this result for the stability
properties of thermohaline staircases are profound; these are discussed in § 3.

2.3. Linear stability analysis

We now consider the perturbed staircase shown in figure 1(b). Tnn+1 denotes the
temperature at the centre of a convecting layer bounded by the interfaces at z = zn

and z = zn+1, �Tn n+1 is the temperature variation across this layer, and �Tn is the
temperature jump across the nth interface (analogous notation is used for salinity). In
time, temperature and salinity jumps across layers and interfaces may change, as may
the distance between neighbouring interfaces. While both effects are realized in the
oceanic and laboratory contexts, the vertical drift of the salt-finger interfaces is usually
(e.g. McDougall 1991) related to the nonlinearity of the equation of state, which is
beyond the scope of the present model. Thus, the distance between neighbouring
interfaces is assumed constant.

Assuming that temperature and salinity profiles in the convecting layers are
symmetric in z, as observed in laboratory and numerical experiments, the temperatures
and salinities at their centres (Tn n+1, Snn+1) also represent the layer-averaged values,
and consequently

H (∂/∂t)T01 = FT 1 − FT 0, (9a)

H (∂/∂t)T12 = FT 2 − FT 1, (9b)

H (∂/∂t)T23 = FT 3 − FT 2, (9c)
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where FT n is the downward heat flux across the interface at z = zn. Next, we subtract
(9a) from (9b), subtract (9b) from (9c), and simplify the results using the periodicity
conditions FT 0 = FT 2, FT 3 =FT 1, �T01 = �T23:

H (∂/∂t)[�T2 + 0.5(�T12 + �T23)] = 2(FT 1 − FT 2), (10a)

H (∂/∂t)[�T1 + 0.5(�T12 + �T23)] = −2(FT 1 − FT 2). (10b)

Subtracting (10b) from (10a), we arrive at

H
∂

∂t
(�T2 − �T1) = 4(FT 1 − FT 2). (11)

The flux law (4) reduces this expression to

H
∂

∂t
(�T2 − �T1) = 4

(
C(R1)�T

4/3
1 − C(R2)�T

4/3
2

)
, (12)

where Rn = �Tn/�Sn, and the corresponding salinity equation is

H
∂

∂t
(�S2 − �S1) = 4

(
C(R1)

γ (R1)
�T

4/3
1 − C(R2)

γ (R2)
�T

4/3
2

)
. (13)

Note that the temperature and salinity jumps across the mixed layers do not appear
explicitly in relations (12) and (13). Thus, the interfacial dynamics described by this
system is decoupled from convection in the mixed layers, which is rather remarkable
since here (�Tn n+1, �Snn+1) are not necessarily small.

We now simplify our key relations (12) and (13) by introducing the following
variables:

A =
�T2 − �T1

�TI

, B =
�S2 − �S1

�SI

,

which represent the relative amplitude of the ‘merging’ perturbation in figure 1(b).
In order to perform a linear stability analysis of the steady state in figure 1(a), we
consider A, B � 1 and linearize (12) and (13) retaining only the order-(A, B) terms.
The resulting linear system for A and B is

H�TI

∂

∂t
A = −4

(
∂C

∂R

∣∣∣∣
R=RI

RI (A − B) +
4

3
C(RI )A

)
�T

4/3
I ,

H�SI

∂

∂t
B =

− 4

(
1

γ (RI )

∂C

∂R

∣∣∣∣
R=RI

RI (A − B) +
4

3

C(RI )

γ (RI )
A + C(RI )

∂
(
1/γ

)
∂R

∣∣∣∣
R=RI

RI (A − B)

)
�T

4/3
I ,

and substitution of the normal modes (A, B) = (A0, B0) exp(λt) yields the eigenvalue
equation for growth rates:

λ2 +
4�T

1/3
I

H

[
4

3
C(RI ) + D2 − RID2

γ (RI )
− D1C(RI )RI

]
λ − 64�T

2/3
I

3H 2
C2(RI )D1RI = 0,

(14)

where

D1 =
∂(1/γ )

∂R

∣∣∣∣
R=RI

RI , D2 =
∂C

∂R

∣∣∣∣
R=RI

RI .
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Figure 2. Dependence of the flux ratio on the interfacial density ratio RI . Thickening
of layers tends to increase RI and decrease γ (see the text).

The eigenvalue equation (14) suggests the following simple condition for instability.
If γ (R) is a decreasing function of R in the vicinity of R = RI , then D1 > 0. Hence,
the free coefficient of the quadratic eigenvalue equation is negative, and therefore
(14) has two real roots of opposite sign. Existence of a positive eigenvalue implies
the instability of the basic field and suggests that ‘strong’ interfaces, characterized
by larger (�T, �S), grow further at the expense of weaker interfaces. The weaker
interfaces gradually erode and, we argue, eventually disappear, which increases the
average vertical scale of layers. On the other hand, if D1 < 0, both roots of the eigen-
value equation (14) are negative, provided that the heat flux decreases with the density
ratio (D2 < 0), and the basic state in figure 1(a) is stable.

Before we discuss in the next section the consequences of this instability, it should
be emphasized that our key instability condition

∂γ

∂R

∣∣∣∣
R=RI

< 0 (15)

does not depend on the specific interfacial flux law, and different formulations (see
Appendix A) would yield the same result as long as FT increases with �T .

3. The equilibrium height of layers
The eigenvalue equation (14) indicates that the stability of the thermohaline

staircase is controlled by the patterns of the flux law coefficient C(R) and the
flux ratio γ (R). Their qualitative behaviour is known from numerous laboratory
experiments (e.g. Griffiths & Ruddick 1980), numerical simulations (Stern, Radko &
Simeonov 2001), oceanic measurements (St. Laurent & Schmitt 1999), and theoretical
models (Schmitt 1979b; Radko & Stern 2000). C(R) is a decreasing function of R,
which reflects the tendency of double-diffusion to intensify on moving away from the
marginal instability point R = 1/τ (where τ = kS/kT is the Lewis number). Detailed
discussion of the dependence of the flux ratio γ on R, based on the theoretical
reasoning and observational evidence, is given in Appendix B. Here we emphasize that
the flux ratio is non-monotonic; its variation as a function of R is shown schematically
in figure 2. As R is decreased from 1/τ , γ first decreases, reaching its minimum value
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at a point (Rmin) in the interior of the salt-finger interval 1<Rmin < 1/τ , and then
increases – a pattern that can be rationalized by considering fluxes in the linearly
fastest growing fingers (Schmitt 1979b). Schmitt’s model suggests that the flux ratio
rapidly decreases with R in the range 1 <R < 2, remains nearly constant for 2 <R < 8,
where γ ≈ γmin ≈ 0.6, and then gently increases to reach unity at R =1/τ ≈ 100. In
our theory we concentrate on the sufficiently low values of density ratio R < 2 that
favour spontaneous layer formation (R03), and approximate the γ (R) relation there
by the following simple analytical function:

γ (R) = 0.6 +
(R − Rmin)

2

2.5
, Rmin = 2. (16)

In the scenario of layering advocated by R03, transition from a smooth gradient to
the equilibrated staircase begins with the formation of very thin layers, only a few salt
fingers in height. This is a consequence of the ultraviolet catastrophe in the instability
of the flux gradient laws – the linear growth rate of the unstable mode increases with
wavenumber. The layers then undergo a series of merging events, which increase the
average height of layers. The instability condition (15) suggests that the merger of
layers persists for as long as RI <Rmin. According to (8), thickening of layers, in turn,
increases the interfacial density ratio RI . Thus, eventually RI reaches Rmin, at which
point the system of layers becomes stable, and the coarsening stops (see the schematic
in figure 2). The critical condition

RI (H0) = Rmin, (17)

implicitly determines H0. Combining (6) and (7) with the condition that �TI/�SI =
RI = Rmin for H =H0 results in a system of five equations with five unknowns
(TI , TL, SI , SL, H0), which is readily solved for H0(R̄):

H0 =

(
CL

C(Rmin)

)15/8
(Rmin/R̄ − 1)9/4 (Rmin/γmin − 1)1/4

(Rmin/γmin − Rmin/R̄)5/2

(
1

γmin

− 1

)3/8

, (18)

which is the expression sought for the thickness of layers in a fully equilibrated
staircase.†

It is important now to determine whether our theory (18) is capable of predicting
the correct order of magnitude for the step heights (H0) in the ocean. For that, we have
to specify the coefficients of the interfacial and convective flux laws [C(Rmin) and CL].
The most recent and reliable estimate of fluxes in the tropical North Atlantic (C-SALT
staircase) came as a result of the Salt Finger Tracer Release Experiment (Schmitt et al.
2004). The observed overall salt eddy diffusivity of KS =0.9 cm2 s−1 corresponds
to βFS dim = (KSβS̄z)dim ≈ 3 × 10−10 m s−1 and αFT dim = γβFS dim ≈ 2 × 10−10 m s−1. Using
the representative �SI dim = 0.07 p.p.t. in (1) we arrive at CS ∼ 1.5 × 10−4 m s−1, which
translates to non-dimensional C(Rmin) = 0.01. (Note that this number is less, by
an order of magnitude, than the values realized in the laboratory experiments, as
discussed in § 2.1.)

The convective flux law for oceanic staircases is more difficult to calibrate, since
temperature and salinity differences across the mixed layers are small and unsteady.
Furthermore, most of the z-variation in T and S occurs in the thin sublayers
that connect convecting regions with interfaces; the interior of layers is almost

† One can readily recognize that (18) is directly related to the interfacial density ratio equation
(8). While (8) was derived (§ 2) by expanding the governing equations in �TL/�TI , it can be
recovered from (18) by substituting RI for Rmin and using RI ≈ R̄.
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Figure 3. The dimensional equilibrium layer thickness as a function of the background
density ratio R̄ for a fixed background temperature gradient of (∂/∂z)T̄dim = 0.03◦ m−1. Solid
curve corresponds to CL/C =103, whereas the lower (upper) dashed curve is for CL/C = 500
(CL/C = 2 × 103).

homogeneous. However, William Merryfield (private communication) pointed out
that the scale of �TL can be estimated from the temperature inhomogeneities in the
convective plumes measured by Marmorino, Brown & Morris (1987). Their figure 4
shows a relatively thin C-SALT layer (Hdim ≈ 8m) with alternating plumes of cold light
water rising from the lower interface and warm dense plumes descending from above.
A temperature trace through the middle of this layer reveals temperature variations of
∼0.01 ◦C, but much larger contrasts are observed in the thermal boundary sublayers;
visual inspection of figure 4 in Marmorino et al. (1987) suggests �TL ∼ 0.03 ◦C. Using
the second equation in (6), we estimate �ρL/ρ = (1/γ − 1)α�TL ≈ 4 × 10−6, which
results in

Raρ =
g

kT ν

�ρL

ρ
H 3

dim ≈ 1.5 × 1011, NuL =
αFT dimHdim

kT α�TL dim

≈ 2 × 103,

and therefore the coefficient of the convective flux law (3) is CL ∼ 10.
To compare the prediction (18) with oceanographic observations, we now revert to

the dimensional thickness

H0 dim = H0

(
νkT

gα(∂/∂z)T̄dim

)1/4

,

which is plotted (heavy solid line) in figure 3 as a function of the background density
ratio for fixed (∂/∂z)T̄dim = 0.03◦ m−1 and CL/C = 10/0.01 =103. The range of layer
heights in figure 3 (0–300 m) is generally consistent with observations, and so is the
tendency for layers to thicken at low R̄. For R̄ = 1.6, for example, our model predicts
the scale of 20 m, which is close to the thickness of layers observed in the tropical
North Atlantic, whereas very thick layers with H0 dim ∼ 300 m and more are often
observed in the Tyrrhenian Sea (see Zodiatis & Gasparini 1996) where the density
ratio is anomalously low (R̄ ≈ 1.2). It should be noted, however, that (18) strongly
depends on the ratio CL/C, whose value is poorly constrained by oceanographic
measurements, and therefore in figure 3 we also show the H0 dim(R̄) relations (dashed
curves) for CL/C =500 and CL/C = 2 × 103.
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4. Numerical simulations
In order to determine the extent to which the merging conditions suggested by the

foregoing linear analysis are applicable to a system of layers that are not necessarily
close in size and strength, we now turn to a fully nonlinear numerical model. The
following calculation describes the evolution of the temperature and salinity fields
averaged over spatial/time scales that greatly exceed those for individual salt fingers.

4.1. Parameterized gradient flux laws

The continuous one-dimensional large-scale T , S equations in flux form are

∂T

∂t
=

∂

∂z
FT ,

∂S

∂t
=

∂

∂z
FS, (19)

where (FT , FS) are the downward (i.e. positive) temperature and salinity fluxes, and
(T , S) represent the local modification of the uniform background gradients. The
total large-scale temperature and salinity fields are therefore given by Ttotal = z + T ,
Stotal = z/R̄ + S.

For the salt-finger regions, where density increases with depth, we assume, following
R03, that fluxes depend only on local large-scale gradients:

FT = Nu(R)
∂Ttotal

∂z

FS =
1

γ (R)
FT


 for

∂ρtotal

∂z
< 0 (20)

where the non-dimensional parameters γ and Nu> 0 are the flux ratio and the Nusselt
number respectively; these are determined by the local density ratio (see the discussion
in R03)

R =
(∂/∂z)Ttotal

(∂/∂z)Stotal

=
1 + (∂/∂z)T

1/R̄ + (∂/∂z)S
.

A simple analytical function, consistent with the direct numerical simulations in Stern
et al. (2001), is used for the Nusselt number:

Nu(R) =
50

R − 1
, (21)

and the γ (R) relation is given in (16). In what follows the gradient flux formulation
(20) will be applied locally to the interfaces in a staircase and related to the interfacial
flux laws used in our analytical theory.

Different physics, however, applies to the convective regions, where the averaged
density decreases with depth. As assumed in (3), the magnitude of fluxes there is
determined by the density Rayleigh number (2) based on the height of a density
inversion, which is reflected in the following closure:

FT = NuL

∂Ttotal

∂z
= CLRa0.2

ρ

∂Ttotal

∂z

FS = CLRa0.2
ρ

∂Stotal

∂z


 for

∂ρtotal

∂z
> 0. (22)

The parameterization in (22) clearly oversimplifies the dynamics of convection. Since
the eddy diffusivity in the model (K = CLRa0.2

ρ ) is spatially uniform within the layers,
the resulting temperature and salinity profiles are linear. Thus, our solutions cannot
describe certain distinctive features of turbulent convection, such as the presence
of thin stratified sublayers at the edges of the convecting zones or a relatively
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homogeneous interior. However, this model correctly represents the integral properties
of convection, particularly the dependence of fluxes on layer height and density
variation. These are the characteristics that actually control the evolution of the
thermohaline staircase in time, which justifies use of the parameterization in (22) as
a zero-order description of the physics and dynamics at play.

4.2. Model solutions

A major difficulty in treating the parameterized salt-finger equations (19) and (20)
is related to the properties of the layer-forming instability of smooth temperature
and salinity gradients (γ -instability in R03). As shown in R03, this instability is
characterized by the increase and divergence of the growth rate as the wavenumber
of disturbances increases, implying that the problem is mathematically ill-posed.
However, this ultraviolet catastrophe in the model may be unphysical, since the
stability analysis itself is valid only for scales that exceed the characteristic salt-finger
width. Direct numerical simulations in R03 show that the layers formed first on the
uniform basic gradient are a few (∼10) salt fingers in height, which suggests that
higher harmonics are damped by the processes that are beyond the scope of our
theory. In order to surmount the problem of ill-posedness, the governing equations
(19) are modified by adding the hyperdiffusion terms as follows:

∂T

∂t
=

∂

∂z
FT − µ

∂4

∂z4
T ,

∂S

∂t
=

∂

∂z
FS − µ

∂4

∂z4
S, (23)

which suppresses the growth of small-scale modes in the numerical model, but has
little effect on scales that significantly exceed the characteristic salt-finger width. For
simplicity, we use a spatially uniform hyperdiffusivity µ.

We impose the periodic boundary conditions for (T , S) at the ends of the
computational interval (z = 0, Lz), and the system of equations (20), (22) and (23)
is solved numerically using a pseudospectral method analogous to that employed in
Radko & Stern (2000). In the following calculation R̄ = 1.6, and the height of the
computational domain is Lz = 14 800, which corresponds to the dimensional height
of approximately 100 m, resolved by Nz = 1024 elements. As previously, CL = 10. The
model is initiated by uniform temperature and salinity gradients slightly perturbed by
the linearly fastest-growing unstable mode of equations (20) and (23). The dissipation
parameter µ = 5 × 104 is chosen such that the wavelength of this mode exceeds the
width of the fastest-growing individual fingers by an order of magnitude, as suggested
by the direct numerical simulations in R03.

Figure 4 presents the evolution in time of the temperature profile Ttotal(z). The
first stage is characterized by the monotonic growth of the unstable normal mode.
Modification of the initial temperature distribution by the γ -instability at t = 80 is
shown in figure 4(a). By t =400 (figure 4b), the amplitude of the perturbation becomes
sufficient to create numerous density inversions, where the fluxes are controlled by
the convective closure (22). Figure 4(c–e) illustrates the change in the evolutionary
pattern associated with the formation of a well-defined staircase: the steps start to
merge continuously. Merging occurs when sufficiently strong interfaces, characterized
by large temperature and salinity jumps, grow further, while weaker interfaces decay
and eventually disappear, in accord with predictions of the linear theory in § § 2,3.
The number of layers decreases and their characteristic vertical scale increases
correspondingly. As expected, the interfaces do not drift vertically. However, as
time progresses, the coarsening of layers becomes less rapid and eventually stops
completely. No visible changes in the temperature field occur between t = 2.5 × 105
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(a) t = 80

z

(b) t = 400 (c) t = 2 × 104

(d) t = 105

Ttotal

z

(e) t = 2.5 × 105

Ttotal

( f ) t = 4 × 105

Ttotal

H0

Figure 4. Formation and evolution of layers in the numerical experiment. The total
temperature profiles are shown at (a–f ) t = 80, 400, 2 × 104, 1 × 105, 2.5 × 105, 4 × 105. Note
the appearance of the convecting layers separated by thin stratified interfaces at t =400,
followed by a series of merging events, and their eventual equilibration.

in figure 4(e) and t = 4 × 105 in figure 4(f ), suggesting that the staircase reaches a
stable steady state. Note that the period of equilibration in figure 4 is remarkably
long (relative to the finger time scale),

tdim ∼ 2.5 × 105

(
ν

gkT α(∂/∂z)T̄dim

)1/2

≈ 2.5 years.

Such a slow predicted evolution of thermohaline staircases by merger is supported
by some of the oceanographic observations – see, for example, figure 11(a, b) in
Zodiatis & Gasparini (1996) for the Tyrrhenian staircase.
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Figure 5. Evolution of the interfacial density ratios (RI ) in time. Note the drift towards higher
values of RI , which stabilizes the staircase; the boundary of the stable zone RI > Rmin = 2 is
indicated by the straight horizontal line.

The equilibration of a staircase in the analytical theory (§ § 2,3) was attributed to the
fact that interfacial density ratios approach a critical value Rmin, where ∂γ /∂R changes
sign. To confirm that this effect is responsible for arresting the coarsening of layers in
the foregoing numerical simulation, we plot in figure 5 the interfacial density ratios
at various times. These are computed numerically from variations in T and S across
regions with negative density gradient. As layers merge, the interfacial density ratios
drift towards higher values, which tends to suppress the merging instability. Finally,
at t = 2.5 × 105, all interfacial density ratios enter the stable zone RI � Rmin = 2, and
the merging stops.†

Diagnostics in figure 5 indicate that our numerical simulation does reproduce the
mechanism of equilibration predicted by the linear model in § § 2,3. It remains to be
shown that the equilibrium height realized in the numerical model is also consistent
with the theoretical prediction; to do that, we first derive the interfacial flux law
realized in the numerical model. Scaling analysis of the salt-finger equations (23)
indicates that the characteristic thickness of the interfaces h in the model is controlled
by the dissipation parameter µ, and therefore h = h(RI , µ), independent of the jumps
in the individual density components across the interface. According to (20) and (21),

† Note that because of the nonlinearity of the governing equations, the interfacial γI (RI ) relation
is slightly different from the local γ (R) relation (16) assumed for the interior of the interfaces. The
stability of a staircase is of course controlled by the pattern of the interfacial flux ratio γI (RI ).
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Figure 6. The non-dimensional downward fluxes of heat and salt as a function of time for
the calculation in figure 4. Formation and merger of layers is accompanied by a significant
increase in fluxes.

the temperature flux is

FT ∝ �TI

h
Nu(RI ) = C(R)�TI . (24)

Thus, our numerical simulation corresponds to the case in which the exponents (a, b)
of the power laws (A 1) for convection and salt fingering, discussed in AppendixA,
are

a = 0.2, b = 1, (25)

that is, slightly different from our central example in § § 2,3 with (a, b) = (0.2, 4/3). This
form of the interfacial flux law (24) is a consequence of the assumed parameterization
(23) in which the dissipation parameter µ is constant; the conventional 4/3 flux law
can be recovered by introducing a more complicated model (not shown) with spatially
varying µ which is set by the local, rather than overall, temperature/salinity gradients.

The coefficient of the flux law (24) is calibrated from the numerical simulation
in figure 4. For RI approaching Rmin, its value is C =0.18, and the expression for
equilibrium thickness derived in AppendixA (A 4) yields

H0 = 2.8 × 103. (26)

This value is close to the thickness realized in the numerical model – the theoretical
scale is indicated in figure 4(f ) by a heavy vertical line. In dimensional units, (26)
corresponds to H0 dim ∼ 20 m, which is consistent with the observed thickness of oceanic
layers for R̄ = 1.6 (Schmitt 1981).

It is also interesting to examine how the staircase formation and evolution affects
temperature and salinity fluxes. Figure 6 gives the time record of the z-averaged
fluxes for the experiment in figure 4, which indicates that the merger events are
accompanied by significant increase in fluxes. Overall, formation and equilibration
of the staircase changes the fluxes by almost an order of magnitude relative to
that on a uniform gradient. Corresponding dimensional eddy diffusivities increase
from KT = 0.12 cm2 s−1 to KT = 0.9 cm2 s−1 for heat, and from KS =0.25 cm2 s−1 to
KS = 2 cm2 s−1 for salt. These diffusivities are comparable (within a factor of two) to



The thickness of layers in a thermohaline staircase 93

the values suggested by oceanographic microstructure and tracer release measurements
in a smooth T , S gradient (Ledwell, Watson & Law 1993) and in a thermohaline
staircase (Schmitt et al. 2004).

Finally, to test the sensitivity of our results to the assumed value of the dissipation
parameter µ, we have also performed an experiment in which µ was reduced by a
factor of two (to µ = 2.5 × 104). The average step height in the equilibrated staircase
decreased to H0 dim = 15 m, the equilibration period reduced to one year, and the final
eddy diffusivities became KT =0.6 cm2 s−1, KS =1.4 cm2 s−1.

5. Discussion
In this paper we have studied the dynamics of layers and interfaces in a double-

diffusive fluid using a theoretical model and numerical simulations. The evolution of
the initially uniform temperature and salinity gradients into an equilibrated staircase
can be divided into three distinct stages. The first features to emerge are related
to the instability of the salt-finger gradient flux laws. Unstable perturbations grow
monotonically and eventually transform the basic gradient into a stepped structure
consisting of salt-finger interfaces sandwiched between convecting layers. Layers that
form first are thin and unsteady. The next evolutionary stage consists of a series of
merging events, in which strong interfaces, characterized by large temperature and
salinity jumps, grow further at the expense of weaker interfaces that gradually erode
and eventually disappear. The characteristic size of steps correspondingly increases in
time.

The final stage involves the equilibration of a staircase when layers become
sufficiently thick. This is explained by the linear stability analysis for a series of
identical interfaces, which reveals a tendency for layers to merge if their height
(H ) is less than the critical value (H0) and to remain steady if H exceeds H0. The
existence of a long-wave cut-off scale for the merging instability is related to the
slight inhomogeneity of the convecting layers, which has a stabilizing effect on the
thermohaline staircase. The predicted equilibrium scale of steps (∼20 m for the density
ratio of R̄ =1.6) is consistent with oceanographic observations, and inferences from
the linear instability theory are supported by fully nonlinear numerical simulations in
§ 4.

Although our specific solutions depend on the interfacial and convective flux laws,
which are not well-known in the oceanographic context, some features are robust
and not model dependent. In particular, there are a number of theoretical predictions
for equilibrated staircases that are testable against the observations and laboratory
experiments. These include the following:

1. The local density ratio in the salt-finger interfaces significantly exceeds the
background density ratio.

2. The flux ratio in staircases is spatially uniform and equals the minimum value
γI = min

R
[γ (R)].

3. The height of steps sharply decreases with the density ratio but only weakly
depends on the background temperature gradient.

Some existing observational evidence already tends to support these aspects of our
theory. The anticorrelation of the step heights with R̄ is particularly conspicuous for
layers within the same staircase (see, for example, table 1 in Zodiatis & Gasparini
1996) but can also be noticed by comparing the different staircases (Schmitt 1981).
The strikingly uniform apparent flux convergence ratio noted by Schmitt et al. (1987)
may also be directly related to the predicted uniformity of γ in the fully equilibrated
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staircases. However, more measurements and data analysis focusing on equilibrium
balances would be needed to prove unequivocally that the predicted dynamics is
realized in oceanic conditions.

It is also important to note that many features of double-diffusive layering are
very similar to those for turbulent one-component fluids (e.g. Balmforth, Llewellyn
Smith & Young 1998). These include the formation of thin layers as a result of flux-
law instabilities and their subsequent coarsening. However, the layer merger events in
Balmforth et al.’s theory continue indefinitely, which indicates that the one-component
model does not include the dynamics required to explain the finite vertical scale of
the oceanic steps. Thus, the key strength of our model is related to its ability to
describe the processes that arrest the coarsening of layers and thereby determine their
equilibrium thickness.

Support of the National Science Foundation is gratefully acknowledged. The author
thanks Jim Ledwell, William Merryfield, Ray Schmitt, Melvin Stern and George
Veronis for helpful comments.

Appendix A. Generalization of the analytical theory
While the stability analysis in § § 2,3 was based on the specific parameterizations of

the convection and salt fingering in (4) and (5), it is straightforward to extend our
theory to the more general flux laws given by

FT = CL

�TL

H
Raa

ρ, for layers,

FT = C(RI )(�TI )
b, for interfaces,


 (A 1)

where a and b are the arbitrary positive numbers. Generalization of the asymptotic
expression (8) yields

�R = RI − R̄ = R̄

(
R̄

γ
− 1

) [
C(R̄)

CL(γ −1 − 1)a

] 1
1+a

H
b−4a
a+1 + O

(
�T 2

L

�T 2
I

)
,

which implies that the coarsening of layers is accompanied by an increase of the
interfacial density ratio, provided that

b > 4a. (A 2)

The existing evidence (see the discussion in § 2.1) indicates that the flux laws realized
in the thermohaline staircases do satisfy the consistency condition in (A 2).

Reproducing the linear stability analysis in § 2.3 for the interfacial flux law in (A 1)
yields the following equation for growth rates:

λ2 +
4�T b−1

I

H

[
bC(RI ) + D2 − RID2

γ (RI )
− D1C(RI )RI

]
λ − 16b�T 2b−2

I

H 2
C2(RI )D1RI = 0.

(A 3)

Clearly, the previously used eigenvalue equation (14) is a particular case of (A 3)
for b = 4/3, and, as long as b > 0, the instability condition (15) in § 2 is valid in the
general case as well. If R < Rmin, then

D1 =
∂(1/γ )

∂R

∣∣∣∣
R=RI

RI > 0,
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Figure 7. Dependence of the layer thickness (normalized by its value at R̄ = 1.1) on the

background density ratio (R̄). (a) The patterns of Ĥ 0(R̄) for a fixed exponent of the convective
flux law a = 0.2 and various exponents of the interfacial flux law b; in (b) we use a fixed
b = 4/3 and different values of a.

and (A 3) has two real roots of opposite sign. Existence of a positive eigenvalue
implies the instability of a basic state, which manifests itself in a spontaneous merger
of sufficiently thin layers.

Finally, the counterpart of (18) for the equilibrium thickness of layers is now

H0 =

(
CL

C(Rmin)

) 1
b−4a

(
Rmin/R̄ − 1

) a+1
b−4a (Rmin/γmin − 1)

b−a−1
b−4a(

Rmin/γmin − Rmin/R̄
) b

b−4a

(
1

γmin

− 1

) a
b−4a

. (A 4)

The interpretation of (A 4) is greatly complicated by the uncertainty in the specific
values of the prefactors C and CL which control the amplitude of H0. To examine
the general character of the dependence of layer thickness on the density ratio for
various a and b, we normalize H0(R̄) in (A 4) by its value at R̄ = 1.1 and plot
Ĥ 0 = H0(R̄)/H0(1.1) as a function of R̄ in figure 7. All resulting Ĥ 0(R̄) curves
are qualitatively similar and characterized by a sharp decrease of layer thickness
with R̄.

Appendix B. Dependence of the flux ratio (γ ) on the density ratio (R)
Because of its critical role in the theory of layer formation (§ 3), we now review some

known (e.g. Kunze 2003) properties of the γ (R) relation in the salt-finger parameter
range 1 < R < 1/τ .

The heat/salt buoyancy flux ratio γ = αFT dim/βFS dim is one of the most stable
characteristics of active double diffusion whose value is strongly constrained by the
energy requirements. Consider first the situation in which the vertical mixing is driven
entirely by the salt fingers, as occurs in most laboratory and numerical experiments.
The flux ratio in this case has to be less than unity to satisfy the energy balance. That
is, the density flux of heat cannot exceed the oppositely signed density flux of salt;
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Rmin = 1.7 Rmin = 2 Rmin = 2.5

R̄ = 1.2 172 350 640
R̄ = 1.4 28 93 224
R̄ = 1.6 1.4 22 84

Table 1. Theoretical prediction of the equilibrium layer thickness H0 dim in m for various R̄
and Rmin; other parameters are the same as in figure 3.

it is the difference between the potential energy lost by the salt component and the
energy gained by the thermal stratification that drives the fingering flow, eventually
dissipating as kinetic energy.

However, as the marginal stability point is approached (R → 1/τ ), heat flux becomes
close to the flux of salt, fingering weakens and stops completely at R = 1/τ . The
corresponding increase of the flux ratio towards unity has been observed in the
direct numerical simulations (Stern & Radko 1998; Radko & Stern 1999) and can
be rationalized by linear (Schmitt 1979b) and weakly nonlinear analysis (Radko &
Stern 1999, 2000). It is also sensible to assume that the flux ratio reaches unity at
the opposite end of the salt-finger interval (R =1). For R < 1, the system becomes
top-heavy and therefore convectively unstable. The fully developed convection is
characterized by nearly equal diffusivities of the density components and passive
tracers. Hence, γ = R for R < 1 and, unless γ (R) is discontinuous, γ (1) = 1.

Since the flux ratio is less than unity in the interior of the salt-finger interval but
reaches unity at the endpoints, we have an important conclusion that γ (R) has a
minimum in the interior. It is interesting to note that existence of this minimum
is reflected even in the Schmitt (1979b) fastest-growing finger model, although his
theoretical γ (R) curve does not reach unity at R =1 but follows the pattern shown
schematically in figure 2. While Schmitt’s theory cannot be rigorously justified in the
fully nonlinear regime (R � 1/τ ), laboratory experiments demonstrate that it performs
surprisingly well (Kunze 2003) over a wide range of R. For the heat/salt fingers
(τ = 0.01 and Pr = 7), the fastest-growing finger model predicts Rmin = 4, whereas for
the sugar/salt solute (τ = 1/3, Pr = 103), often used in the laboratory experiments (e.g.
Krishnamurti 2003), Rmin = 1.3.

The situation is somewhat different in the oceanic case, where the T , S fluxes are
produced by a combination of double-diffusion and wave-generated turbulence. It is
now commonly accepted (e.g. Kunze 2003) that fluxes in the ocean are controlled
by turbulence for R > 2, whereas salt fingering dominates for sufficiently low R.
Turbulence is characterized by nearly equal eddy diffusivities of heat and salt or,
possibly, slightly higher diffusivity of heat if conditions favour differential diffusion
(Gargett 2003). Thus, the flux ratio (γ (R) = (KT /KS)R ≈ R) increases with R for
R > 2 but decreases for smaller R, implying that the minimum of γ (R) is below
R =2. Oceanographic observations show that staircases are confined to the regions
where R � 1.7 (Schmitt 2003), suggesting that in the ocean Rmin ≈ 1.7 or slightly
above.

To test the sensitivity of our theory (§ 3) to the assumed pattern of the γ (R) relation,
in table 1 we list the values of the equilibrium layer thickness from (18) for various Rmin

and R̄. While the model predictions in the first two columns (Rmin = 1.7 and Rmin = 2)
are consistent with observations, the values of H0 dim for Rmin = 2.5 (third column
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in table 1) are unrealistically high, which supports our conjecture that, for typical
oceanic conditions, the minimum of the flux ratio lies in the range 1.7<Rmin < 2.
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